Mining Sentiments from Songs Using Latent Dirichlet Allocation
نویسندگان
چکیده
Song-selection and mood are interdependent. If we capture a song’s sentiment, we can determine the mood of the listener, which can serve as a basis for recommendation systems. Songs are generally classified according to genres, which don’t entirely reflect sentiments. Thus, we require an unsupervised scheme to mine them. Sentiments are classified into either two (positive/negative) or multiple (happy/angry/sad/...) classes, depending on the application. We are interested in analyzing the feelings invoked by a song, involving multi-class sentiments. To mine the hidden sentimental structure behind a song, in terms of “topics”, we consider its lyrics and use Latent Dirichlet Allocation (LDA). Each song is a mixture of moods. Topics mined by LDA can represent moods. Thus we get a scheme of collecting similar-mood songs. For validation, we use a dataset of songs containing 6 moods annotated by users of a particular website.
منابع مشابه
Automatic keyword extraction using Latent Dirichlet Allocation topic modeling: Similarity with golden standard and users' evaluation
Purpose: This study investigates the automatic keyword extraction from the table of contents of Persian e-books in the field of science using LDA topic modeling, evaluating their similarity with golden standard, and users' viewpoints of the model keywords. Methodology: This is a mixed text-mining research in which LDA topic modeling is used to extract keywords from the table of contents of sci...
متن کاملAnalyzing customer sentiments in microblogs - A topic-model-based approach for Twitter datasets
In the Social Commerce customers evolve to an important information source for companies. The customers use communication platforms of the Web 2.0, for example Twitter, in order to express their opinions about products or discuss their experiences with them. These opinions can be very important for the development of products or the product range of a company. Our approach enables a company vie...
متن کاملDo You Feel What I Feel? Social Aspects of Emotions in Twitter Conversations
We propose a computational framework for analyzing the social aspects of sentiments and emotions in Twitter conversations. We explore the question of sentiment and emotion transitions, asking the question do you feel what I feel? in a conversation. We also inquire whether conversational partners can influence each other, altering their sentiments and emotions, and if so, how they can do so. Fur...
متن کاملSentiment Analysis and E-Learning: a Proposal
The spread of social networks allows sharing opinions on different aspects of life and daily millions of messages appear on the web. This textual information can be divided in facts and opinions. Opinions reflect people’s sentiments about products, personalities and events. Therefore this information is a rich source of data for opinion mining and sentiment analysis: the computational study of ...
متن کاملSentiment Analysis in Social Networks through Topic modeling
In this paper, we analyze the sentiments derived from the conversations that occur in social networks. Our goal is to identify the sentiments of the users in the social network through their conversations. We conduct a study to determine whether users of social networks (twitter in particular) tend to gather together according to the likeness of their sentiments. In our proposed framework, (1) ...
متن کامل